

 VIETNAM NATIONAL UNIVERSITY, HANOI

UNIVERSITY OF ENGINEERING AND TECHNOLOGY

Nguyen Minh Trang

ADVANCED DEEP LEARNING METHODS

AND APPLICATIONS IN

OPEN-DOMAIN QUESTION ANSWERING

MASTER THESIS

Major: Computer Science

HA NOI - 2019

VIETNAM NATIONAL UNIVERSITY, HANOI

UNIVERSITY OF ENGINEERING AND TECHNOLOGY

Nguyen Minh Trang

ADVANCED DEEP LEARNING METHODS

AND APPLICATIONS IN

OPEN-DOMAIN QUESTION ANSWERING

MASTER THESIS

Major: Computer Science

Supervisor: Assoc.Prof. Ha Quang Thuy

 Ph.D. Nguyen Ba Dat

HA NOI - 2019

Abstract

Ever since the Internet has become ubiquitous, the amount of data accessible by
information retrieval systems has increased exponentially. As for information con-
sumers, being able to obtain a short and accurate answer for any query is one of
the most desirable features. This motivation, along with the rise of deep learning,
has led to a boom in open-domain Question Answering (QA) research. An open-
domain QA system usually consists of two modules: retriever and reader. Each
is developed to solve a particular task. While the problem of document compre-
hension has received multiple success with the help of large training corpora and
the emergence of attention mechanism, the development of document retrieval in
open-domain QA has not gain much progress. In this thesis, we propose a novel
encoding method for learning question-aware self-attentive document represen-
tations. Then, these representations are utilized by applying pair-wise ranking
approach to them. The resulting model is a Document Retriever, called QASA,
which is then integrated with a machine reader to form a complete open-domain
QA system. Our system is thoroughly evaluated using QUASAR-T dataset and
shows surpassing results compared to other state-of-the-art methods.

Keywords: Open-domain Question Answering, Document Retrieval, Learning to
Rank, Self-attention mechanism.

iii

Acknowledgements

Foremost, I would like to express my sincere gratitude to my supervisor Assoc.
Prof. Ha Quang Thuy for the continuous support of my Master study and research,
for his patience, motivation, enthusiasm, and immense knowledge. His guidance
helped me in all the time of research and writing of this thesis.

I would also like to thank my co-supervisor Ph.D. Nguyen Ba Dat who has
not only provided me with valuable guidance but also generously funded my re-
search.

My sincere thanks also goes to Assoc. Prof. Chng Eng-Siong and M.Sc. Vu
Thi Ly for offering me the summer internship opportunities in NTU, Singapore
and leading me working on diverse exciting projects.

I thank my fellow labmates in KTLab: M.Sc. Le Hoang Quynh, B.Sc. Can
Duy Cat, B.Sc. Tran Van Lien for the stimulating discussions, and for all the fun
we have had in the last two years.

Last but not the least, I would like to thank my parents for giving birth to me
at the first place and supporting me spiritually throughout my life.

iv

Declaration

I declare that the thesis has been composed by myself and that the work has not
be submitted for any other degree or professional qualification. I confirm that the
work submitted is my own, except where work which has formed part of jointly-
authored publications has been included.

My contribution and those of the other authors to this work have been ex-
plicitly indicated below. I confirm that appropriate credit has been given within
this thesis where reference has been made to the work of others. The work pre-
sented in Chapter 3 was previously published in Proceedings of the 3rd ICMLSC
as “QASA: Advanced Document Retriever for Open Domain Question Answering
by Learning to Rank Question-Aware Self-Attentive Document Representations”
by Trang M. Nguyen (myself), Van-Lien Tran, Duy-Cat Can, Quang-Thuy Ha
(my supervisor), Ly T. Vu, Eng-Siong Chng. This study was conceived by all of
the authors. My contributions include: proposing the method, carrying out the
experiments, and writing the paper.

Master student

Nguyen Minh Trang

v

Table of Contents

Abstract . iii

Acknowledgements . iv

Declaration . v

Table of Contents . vii

Acronyms . viii

List of Figures . x

List of Tables . xi

1 Introduction . 1
1.1 Open-domain Question Answering 1

1.1.1 Problem Statement . 3
1.1.2 Difficulties and Challenges 4

1.2 Deep learning . 6
1.3 Objectives and Thesis Outline 8

2 Background knowledge and Related work 10
2.1 Deep learning in Natural Language Processing 10

2.1.1 Distributed Representation 10
2.1.2 Long Short-Term Memory network 12
2.1.3 Attention Mechanism . 15

2.2 Employed Deep learning techniques 17
2.2.1 Rectified Linear Unit activation function 17
2.2.2 Mini-batch gradient descent 18
2.2.3 Adaptive Moment Estimation optimizer 19
2.2.4 Dropout . 20

vi

2.2.5 Early Stopping . 21
2.3 Pairwise Learning to Rank approach 22
2.4 Related work . 24

3 Material and Methods . 27
3.1 Document Retriever . 27

3.1.1 Embedding Layer . 29
3.1.2 Question Encoding Layer 31
3.1.3 Document Encoding Layer 32
3.1.4 Scoring Function . 33
3.1.5 Training Process . 34

3.2 Document Reader . 37
3.2.1 DrQA Reader . 37
3.2.2 Training Process and Integrated System 39

4 Experiments and Results . 41
4.1 Tools and Environment . 41
4.2 Dataset . 42
4.3 Baseline models . 44
4.4 Experiments . 45

4.4.1 Evaluation Metrics . 45
4.4.2 Document Retriever . 45
4.4.3 Overall system . 48

Conclusions . 50

List of Publications . 51

References . 52

vii

Acronyms

Adam Adaptive Moment Estimation
AoA Attention-over-Attention

BiDAF Bi-directional Attention Flow
BiLSTM Bi-directional Long Short-Term Memory

CBOW Continuous Bag-Of-Words

EL Embedding Layer
EM Exact Match

GA Gated-Attention

IR Information Retrieval

LSTM Long Short-Term Memory

NLP Natural Language Processing

QA Question Answering
QASA Question-Aware Self-Attentive
QEL Question Encoding Layer

R3 Reinforced Ranker-Reader
ReLU Rectified Linear Unit
RNN Recurrent Neural Network

viii

SGD Stochastic Gradient Descent

TF-IDF Term Frequency – Inverse Document Frequency
TREC Text Retrieval Conference

ix

List of Figures

1.1 An overview of Open-domain Question Answering system. 2
1.2 The pipeline architecture of an Open-domain QA system. 3
1.3 The relationship among three related disciplines. 6
1.4 The architecture of a simple feed-forward neural network. 8

2.1 Embedding look-up mechanism. 11
2.2 Recurrent Neural Network. 13
2.3 Long short-term memory cell. 14
2.4 Attention mechanism in the encoder-decoder architecture. 16
2.5 The Rectified Linear Unit function. 18

3.1 The architecture of the Document Retriever. 28
3.2 The architecture of the Embedding Layer. 30

4.1 Example of a question with its corresponding answer and contexts
from QUASAR-T. 42

4.2 Distribution of question genres (left) and answer entity-types (right). 43
4.3 Top-1 accuracy on the validation dataset after each epoch. 47
4.4 Loss diagram of the training dataset calculated after each epoch. . 48

x

List of Tables

1.1 An example of problems encountered by the Document Retriever. 5

4.1 Environment configuration. 41
4.2 QUASAR-T statistics. 43
4.3 Hyperparameter Settings . 46
4.4 Evaluation of retriever models on the QUASAR-T test set. 47
4.5 The overall performance of various open-domain QA systems. . . 49

xi

Chapter 1

Introduction

1.1 Open-domain Question Answering

We are living in the Information Age where many aspects of our lives are driven
by information and technology. With the boom of the Internet few decades ago,
there is now a colossal amount of data available and this number continues to
grow exponentially. Obtaining all of these data is one thing, how to efficiently use
and extract information from them is one of the most demanding requirements.
Generally, the activity of acquiring useful information from a data collection is
called Information Retrieval (IR). A search engine, such as Google or Bing, is
a type of IR. Search engines are extensively used that it is hard to imagine our
lives today without them. Despite their applicability, current search engines and
similar IR systems can only produce a list of relevant documents with respect to
the user’s query. To find the exact answer needed, users still have to manually
examine these documents. Because of this, although IR systems have been handy,
retrieving desirable information is still a time consuming process.

Question Answering (QA) system is another type of IR that is more sophis-
ticated than search engines in terms of being a natural forms of human computer
interaction [27]. The users can express their information needs in natural language
instead of a series of keywords as in search engines. Furthermore, instead of a list
of documents, QA systems try to return the most concise and coherent answers
possible. With the vast amount of data nowadays, QA systems can reduce count-
less effort in retrieving information. Depending on usage, there are two types of
QA: closed-domain and open-domain. Unlike closed-domain QA, which is re-

1

stricted to a certain domain and requires manually constructed knowledge bases,
open-domain QA aims to answer questions about basically anything. Hence, it
mostly relies on world knowledge in the form of large unstructured corpora, e.g.
Wikipedia, but databases are also used if needed. Figure 1.1 shows an overview
of an open-domain QA system.

Figure 1.1: An overview of Open-domain Question Answering system.

The research about QA systems has a long history tracing back to the 1960s
when Green et al. [20] first proposed BASEBALL. About a decade after that,
Woods et al. [48] introduced LUNAR. Both of these systems are closed-domain
and they use manually defined language patterns to transform the questions into
structured database queries. Since then, knowledge bases and closed-domain QA
systems had become dominant [27]. They allow users to ask questions about cer-
tain things but not all. Not until the beginning of this century that open-domain
QA research has become popular with the launch of the annual Text Retrieval
Conference (TREC) [44] started in 1999. Ever since, TREC competitions, espe-
cially the open-domain QA tracks, have progressed in size and complexity of the
dataset provided, and evaluation strategies are improved. [36]. The attention is
now shifting to open-domain QA and in recent years, the number of studies on the
subject has increased exceedingly.

2

1.1.1 Problem Statement

In QA systems, the questions are natural language sentences and there are a many
types of them based on their semantic categories such as factoid, list, causal,
confirmation, hypothetical questions, etc. The most common ones that attract
most studies in the literature are factoid questions which usually begin with Wh-
interrogated words, i.e. What, When, Where, Who [27]. With open-domain QA,
the questions are not restricted to any particular domain but the users can ask
whatever they want. Answers to these questions are facts and they can simply be
expressed in text format.

From an overview perspective, as presented in Figure 1.1, the input and out-
put of an open-domain QA system are straightforward. The input is the question,
which is unrestricted, and the output is the answer, both are coherent natural lan-
guage sentences and presented by text sequences. The system can use resources
from the web or available databases. Any system like this can be considered as
an open-domain QA system. However, open-domain QA is usually broken down
into smaller sub-tasks since being able to give concise answers to any questions
is not trivial. Corresponding to each sub-task, there is a component dedicated
to it. Typically, there are two sub-tasks: document retrieval and document com-
prehension (or machine comprehension). Accordingly, open-domain QA systems
customarily comprise of two modules: a Document Retriever and a Document
Reader. Seemingly, the Document Retriever handles the document retrieval task
and the Document Reader deals with the machine comprehension task. The two
modules can be integrated in a pipeline manner, e.g. [7, 46], to form a complete
open-domain QA system. This architecture is depicted in Figure 1.2.

Figure 1.2: The pipeline architecture of an Open-domain QA system.

3

The input of the system is still a question, namely q, and the output is an
answer a. Given q, the Document Retriever acquires top-k documents from a
search space by ranking them based on their relevance to q. Since the require-
ment for open-domain systems is that they should be able to answer any question,
the hypothetical search space is massive as it must contains the world knowledge.
However, an unlimited search space is not practical, so, knowledge sources like
the Internet, or specifically Wikipidia, are commonly used. In the document re-
trieval phase, a document is considered relevant to question q if it helps answer
q correctly, meaning that it must at least contains the answer within its content.
Nevertheless, containing the answer alone is not enough because the document
returned should also be comprehensible by the Reader and consistent with the se-
mantic of the question. The relevance score is quantifiable by the Retriever so that
all the documents can be ranked using it. Let D represent all documents in the
search space, the set of top-k highest-scored documents is:

D? = argmax
X∈[D]k

(∑
d∈X

f (d, q)

)
(1.1)

where f (·) is the scoring function. After obtaining a workable list of documents,
D?, the Document Reader takes q andD? as input and produces an answer a which
is a text span in some d j ∈ D

? that gives the maximum likelihood of satisfying the
question q. Unlike the Retriever, the Reader only has to handle handful number
of documents. Yet, it has to examine these documents more carefully because its
ultimate goal is to pin point the exact answer span from the text body. This re-
quires certain comprehending power of the Reader as well as the ability to reason
and deduce.

1.1.2 Difficulties and Challenges

Open-domain Question Answering is a non-trivial problem with many difficulties
and challenges. First of all, although the objective of an open-domain QA system
is to give an answer to any question, it is unlikely that this ambition can truly be
achieved. This is because not only our knowledge of the world is limited but also
the knowledge accessible by IR systems is confined to the information they can
process which means it must be digitized. The data can be in various formats
such as text, videos, images, audio, etc [27]. Each format requires a different data
processing approach. Despite the fact that the knowledge available is bounded,

4

considering the web alone, the amount of data obtainable is enormous. It poses
a scaling problem to open-domain QA systems, especially their retrieval module,
not to mention that contents from the Internet are constantly changing.

Since the number of documents in the search space is huge, the retrieving
process needs to be fast. In favor of their speed, many Document Retrievers tend to
make a trade-off with their accuracy. Therefore, these Retrievers are not sophisti-
cated enough to select relevant documents, especially when they require sufficient
comprehending power to understand. Another problem relating to this is that the
answer might not be presented in the returned documents even though these docu-
ments are relevant to the question to some extent. This might be due to imprecise
information since the data is from the web which is an unreliable source, or the
Retriever does not understand the semantic of the question. An example of this
type of problems is presented in Table 1.1. As can be seen from it, the retrieving
model returns document (1) and (3) because it focuses on individual keywords,
e.g. “diamond”, “hardest gem”, “after”, etc. instead of interpreting the meaning
of the question as a whole. Document (2), on the other hand, satisfies the semantic
of the question but it exhibits wrong information.

Table 1.1: An example of problems encountered by the Document Retriever.

Question: What is the second hardest gem after diamond?
Answer: Sapphire

Documents:
(1) Diamond is a native crystalline carbon that is the hardest gem.
(2) Corundum is the the main ingredient of ruby, is the second
hardest material known after diamond.
(3) After graphite, diamond is the second most stable form of
carbon.

As mentioned, open-domain QA systems are usually designed in pipeline
manner, an obvious problem is that they suffer cascading error where the Reader’s
performance depends on the Retriever’s. Therefore, a poor Retriever can cause a
serious bottleneck for the entire system.

5

1.2 Deep learning

In recent years, deep learning has become a trend in machine learning research
due to its effectiveness in solving practical problems. Despite being newly and
widely adopted, deep learning has a long history dating all the way back to the
1940s when Walter Pitts and Warren McCulloch introduced the first mathematical
model of a neural network [33]. The reason that we see the swift advancement in
deep learning only until recently is because of the colossal amount of training data
made available by the Internet and the evolution of competent computer hardware
and software infrastructure [17]. With the right conditions, deep learning has
received multiple successes across disciplines such as computer vision, speech
recognition, natural language processing, etc.

Artificial Intelligence

Machine Learning

Deep Learning

Figure 1.3: The relationship among three related disciplines.

For any machine learning system to work, the raw data needs to be processed
and converted into feature vectors. This is the work of multiple feature extractors.
However, traditional machine learning techniques are incapable of learning these
extractors automatically that they usually require domain experts to carefully se-
lect what features might be useful [29]. This process is typically known as “feature
engineering.” Andrew Ng once said: “Coming up with features is difficult, time
consuming, requires expert knowledge. “Applied machine learning” is basically
feature engineering.”

6

Although deep learning is a stem of machine learning, as depicted by a Venn
diagram in Figure 1.3, its approach is quite different from other machine learn-
ing methods. Not only does it require very little to no hand-designed features
but also it can produce useful features automatically. The feature vectors can
be considered as new representations of the input data. Hence, besides learn-
ing the computational models that actually solve the given tasks, deep learning
is also representation-learning with multiple levels of abstractions [29]. More
importantly, after being learned in one task, these representations can be reused
efficiently by many different but similar tasks, which is called “transfer learning.”

In machine learning as well as deep learning, supervised learning is the most
common form and it is applicable to a wide range of applications. With supervised
learning, each training instance contains the input data and its label, which is the
desired output of the machine learning system given that input data. In the classifi-
cation task, a label represents a class to which the data point belongs, therefore, the
number of label values are finite. In other words, given the data X = {x1, x2, ..., xn}

and the labels Y = {y1, y2, ..., yn}, the set T = {(xi, yi) | xi ∈ X, yi ∈ Y, 1 ≤ i ≤ n}
is called the training dataset. For a deep learning model to learn from this data,
a loss function needs to be defined beforehand to measure the error between the
predicted labels and the ground-truth labels. The learning process is actually the
process of tuning the parameters of the model to minimize the loss function. To
do this, the most popular algorithm can be used is back-propagation [39], which
calculates the gradient vector that indicates how the loss function changes with
respect to the parameters. Then, the parameters can be updated accordingly.

A deep learning model, or a multi-layer neural network, can be used to rep-
resent a complex non-linear function hW(x)where x is the input data and W is the
trainable parameters. Figure 1.4 shows a simple deep learning model that has one
input layer, one hidden layer, and one output layer. Specifically, the input layer
has four units that is x1, x2, x3, x4; the hidden layer has three units a1, a2, a3;
the output layer has two units y1, y2. This model belongs to a type of neural net-
work called fully-connected feed-forward neural network since the connections
between units do not form a cycle and each unit from the previous layer is con-
nected to all units from the next layer [17]. It can be seen from Figure 1.4 that the
output of the previous layer is the input of the following layer. Generally, the value
of each unit of the k-th layer (k ≥ 2, k = 1 indicates the input layer), given the
input vector ak−1 =

{
ak−1

i | 1 ≤ i ≤ n
}
, n is the number of units in the (k − 1)-th

7

x1

x2

x3

x4

a1

a2

a3

y1

y2

Input
Layer

Hidden
Layer

Output
Layer

Error back-propagation

Figure 1.4: The architecture of a simple feed-forward neural network.

layer (including the bias), is calculated as follows:

ak
j = g

(
zk

j

)
= g

(
n∑

i=1

wk−1
ji ak−1

i

)
(1.2)

where 1 ≤ j ≤ m, with m is the number of units in the k-th layer (not including the
bias); wk−1

ji is the weight value between the j-th unit of the k-th layer and the i-th
unit of the (k − 1)-th layer; g(x) is a non-linear activation function, e.g. sigmoid
function. Vector ak is then fed into the next layer as input (if it is not the output
layer) and the process repeats. This process of calculating the output vector for
each layer when the parameters are fixed is called forward-propagation. At the
output layer, the predicted vector for the input data x, ŷ = hW(x), is obtained.

1.3 Objectives and Thesis Outline

While there are numerous models proposed for dealing with machine comprehen-
sion task [9, 11, 41, 47], advanced document retrieval models in open-domain QA
have not received much investigation even though the Retriever’s performance is
critical to the system. To promote the Retriever’s development, Dhingra et al.

8

proposed QUASAR dataset [12] which encourages open-domain QA research to
go beyond understanding a given document and be able to retrieve relevant docu-
ments from a large corpus provided only the question. Following this progression
and the works in [7, 46], the thesis focus on building an advanced model for doc-
ument retrieval and the contributions are as follow:

• The thesis proposes a method for learning question-aware self-attentive doc-
ument encodings that, to the best of our knowledge, is the first to be applied
in document retrieval.

• The Reader from DrQA [7] is utilized and combined with the Retriever to
form a pipeline system for open-domain QA.

• The system is thoroughly evaluated on QUASAR-T dataset and achieves ex-
ceeding performance compared to other state-of-the-art methods.

The structure of the thesis includes:

Chapter 1: The thesis introduces Question Answering and focuses on Open-
domain Question Answering systems as well as their difficulties and challenges.
A brief introduction about Deep learning is presented and the objectives of the
thesis are stated.

Chapter 2: Background knowledge and related work of the thesis are intro-
duced. Various deep learning techniques that are directly used in this thesis are
represented. This chapter also explains pairwise learning to rank approach and
briefly goes through some notable related work in the literature.

Chapter 3: The proposed Retriever is demonstrated in detail with four main
components: an Embedding Layer, a Question and Document Encoding Layer,
and a Scoring Function. Then, an open-domain QA system is formed with our
Retriever and the Reader from DrQA. The training procedures of these two models
are described.

Chapter 4: The implementation of the models is discussed with detailed
hyperparameter settings. The Retriever as well as the complete system are thor-
oughly evaluated using a standard dataset, QUASAR-T. Then, they are com-
pared with baseline models, some of which are state-of-the-art, to demonstrate
the strength of the system.

Conclusions: The summary of the thesis and future work.

9

Chapter 2

Background knowledge and
Related work

2.1 Deep learning in Natural Language Processing

2.1.1 Distributed Representation

Unlike computer vision problems where they can take in raw images (basically
tensors of numbers) as the input for the model, in natural language processing
(NLP) problems, the input is usually a series of words/characters which is not
a type of values that a deep learning model can work on directly. Therefore, a
mapping technique is required to transform a word/character to its vector repre-
sentation at the very first layer so that the model can understand.

Figure 2.1 depicts such mechanism which is commonly known as embedding
look-up mechanism. The embedding matrix, which is a list of embedding vectors,
can be initialized randomly or/and learned by some representation learning meth-
ods. If the embeddings are learned through some “fake” tasks before applying
to the model, they are called pre-trained embeddings. Depends on the problem,
the pre-trained embeddings can be fixed [24] or fine-tunned during training [28].
Whether it is word embedding or character embedding that we use, the look-up
mechanism works the same. However, the impact that each type of embedding
makes is quite different.

10

Token List

...

lexicon

money

next

...

ID

...

20

21

22

...

Vocabulary

moneyToken:

Look up

...

...

Embedding Matrix

Vocabulary size
Embedding size

row 21

Mapping

Embedding vector:

Retrieve

Figure 2.1: Embedding look-up mechanism.

2.1.1.1 Word Embedding

Word embedding is a distributional vector that is assigned to a word. The simplest
way to acquire this vector is to create it randomly. Nonetheless, this would result
in no meaningful representation that can aid the learning process. It is desirable to
have word embeddings with ability to capture similarity between words [14], and
there are several ways to achieve this.

According to [50], the use of word embeddings was popularized by the work
in [35] and [34], where two famous models, continuous bag-of-words (CBOW)
and skip-gram, are proposed, respectively. These models follow the distributional
hypothesis which states that similar words tend to appear in similar context. With
CBOW, the conditional probability of a word is computed given its surrounding
words obtained by applying a sliding window of size k. For example, with k =
2, we calculate P (wi | wi−2,wi−1,wi+1,wi+2). In this case, the context words are
the input and the middle word is the output. Contrarily, the skip-gram model is
basically the inverse of CBOW where the input are now a single word and the
output are the context words. Generally, the original task is to obtain useful word
embeddings, not to build a model that predicts words. So, what we care about are

11

the vector outputted by the hidden layer for each word in the vocabulary after the
model is trained. Word embedding is widely used in the literature because of its
efficiency. It is a fundamental layer in any deep learning model dealing with NLP
problems as well as the contributing reason for many state-of-the-art results [50].

2.1.1.2 Character Embedding

Instead of capturing syntactic and semantic information like word embedding,
character embedding models the morphological representation of words. Besides
adding more useful linguistic information to the model, using character embed-
ding has many benefits. For many languages (e.g. English, Vietnamese, etc), the
character vocabulary size is much smaller than the word vocabulary size which re-
sults in much less embedding vectors needed to be learned. Since all words com-
prise of characters, character embedding is the natural choice for handling out-of-
vocabulary problem that word embedding method usually suffers from even with
large word vocabularies. Especially, when using character embedding with con-
junction with word embedding, several methods show significant improvement
[10, 13, 32]. Some other methods use only character embedding and still achieve
positive results [6, 25].

2.1.2 Long Short-Term Memory network

For almost any NLP problems, the input is in the form of token stream (e.g. sen-
tences, paragraphs). After mapping these tokens to their corresponding embed-
ding vectors, we will have a list of such vectors where each vector is an input
feature. If we apply a traditional fully-connected feed-forward neural network,
each input feature would have a different set of parameters. It would be hard for
the model to learn the position independent aspect of language [17]. For example,
given two sentences “I need to find my key”, “My key is what I need to find” and a
question “What do I need to find?”, we want the answer to be “my key” no matter
where that phrase is in the sentence.

Recurrent neural network (RNN) is a type model that was born to deal with
sequential data. RNN was made possible using the idea of parameter sharing
across time steps. Besides the fact that the number of parameters can be reduced
drastically, this helps RNNs generalize to process sequences of variable length

12

such as sentences even if they were not seen during training, which requires much
less training data. More importantly, the statistical power of the model can be
reused for each input feature.

x0 x1 x2 xn xt

A

ht h0 h1 h2 hn

Unfold
A A A A

Figure 2.2: Recurrent Neural Network.

There are two ways to describe an RNN as depicted in Figure 2.2. The left
diagram represents the actual implementation of the network at time step t, which
contains the input xt , the output ht and a function A that takes both the current
input and the output of the previous step as arguments. It is worth nothing that
there is only one function A with one set of parameters. We can see that all the
information up to time step t is accumulated into ht . The right diagram is the
unfolded version of the left diagram where all time steps are flatten out, each
repeats the others in terms of computation except at a different time step, or state.
The RNN shown in Figure 2.2 is one directional and the network state at time t
is only affected by the states in the past. Sometimes, we want the output of the
network ht to depend on both the past and the future. In other words, ht must take
into account the information accumulated from both directions up to t. We can
achieve this by reversing the original input sequence and apply another RNN to it.
Then, the final output is a combination of these two RNNs’ output. This network
is called bi-directional recurrent neural network [17].

While it seems like RNN is the ideal model for NLP, in practice, the vanilla
RNN is very hard to train due to the problem called vanishing/exploding gradient.
Later, long short-term memory (LSTM) network [23] was proposed to combat the
problem by introducing gating mechanism. The idea is to design self-loop paths
that retain the gradient flow for long periods. To improve the idea even more,
[15] proposed a weighted gating mechanism that can be learned rather than fixed.
In the traditional RNN shown previously, function A is just a simple non-linear

13

x

x x

+

tanhσ σ σ

Ct-1

ht-1

xt

ht

Ct

ht

ft it ot
Ct
~

tanh

Figure 2.3: Long short-term memory cell.

transformation. In LSTM networks, A is replaced with a LSTM cell, which has
an internal loop, as depicted in Figure 2.3. Thanks to this feature, LSTM networks
can learn long-term dependencies much easier than the vanilla recurrent networks
[17]. The operation visually represented in Figure 2.3 can be rewritten as formulas
for a time step t as follows:

it = σ
(
xtU

i + ht−1W
i
)

(2.1)

ft = σ
(
xtU

f + ht−1W
f
)

(2.2)

ot = σ (xtU
o + ht−1W

o) (2.3)

c̃t = tanh (xtU
g + ht−1W

g) (2.4)

ct = ft � ct−1 + it � c̃t (2.5)

ht = tanh (ct) � ot (2.6)

where Ui, Wi, U f , W f , Uo, Wo, Ug, Wg are the parameters; � is the element-
wise multiplication; it represents the input gate that decides how much to take
in new information; ft is the forget gate which controls how much to forget the
information stored in the cell; ot is the output gate that regulates the information
produced at time step t. Because of its robustness, LSTM has been widely and
successfully adopted to solve various problems such as machine translation [3],
speech recognition [19], image caption generation [49], and many others.

14

2.1.3 Attention Mechanism

2.1.3.1 General framework

For humans, attention mechanism is a solution to help us perceive information
effectively, to select what matters and filter out what does not because our brains’
processing power is way more limited than the amount of information we can (or
cannot) absorb [2]. Although the way attention mechanism in machine learning
works is far from how our brains function, there is a similarity in the abstract idea,
which is the ability to focus on a particular part of the input. Hence, the term
“attention” is borrowed.

Recurrent neural network, which was discussed previously, deals with se-
quential input. Sometimes, this input can get really long that can saturate the
information overall to a point where it becomes useless or even misleading. This
problem happens even with LSTM networks.

In the encoder-decoder architecture, which is a common solution for ma-
chine translation or text summarization problems, the encoder needs to learn to
compress the input into a meaningful intermediate representation before feeding
it to the decoder [50]. The longer the input sequence, the harder it is to encode
it. This is where the attention mechanism comes into play. As in tasks like ma-
chine translation, each part of the output sequence is highly dependent on only
some part of the input sequence, rarely all of it. With attention mechanism, this
intuition can be achieved.

Attention mechanism was introduced by [3] for machine translation task.
In the paper, the authors propose an extension to the traditional encoder-decoder
architecture that enable it to perform (soft-)searches for relevant parts in the input
sequence automatically. Their idea is demonstrated in Figure 2.4. Firstly, they
define a conditional probability for each output [3]:

p (yt | y1, ..., yt−1, x) = g(yt−1, st, ct) (2.7)

with st be the hidden state for time step t in the decoder:

st = f (st−1, yt−1, ct) (2.8)

and ct , which is called the context vector for time step t, be the weighted sum of

15

h1 h2 h3 hn

st-1 st

yt-1

αt,1
αt,2 αt,3

αt,n

ct

Figure 2.4: Attention mechanism in the encoder-decoder architecture.

all the hidden states in the encoder:

ct =

n∑
j=1

αt jh j (2.9)

The weight for the hidden state h j at time step t is calculated as follows:

αt j =
exp(et j)∑n

k=1 exp(etk)
(2.10)

et j = A(st−1, h j) (2.11)

where A is the alignment model and implemented using feed-forward neural net-
works. With this attention mechanism, the encoder is relieved from trying to
compress all the input information into a fixed-length vector. Instead, at each gen-
eration step in the decoder, the model learns to select the important parts of the
input.

The attention mechanism proposed in [3] is considered the general attention
framework. Although it is still an active field of research [50], attention mecha-
nism has been shown to be highly effective and widely adopted not only in NLP
but also in many other fields such as computer vision [49].

16

2.1.3.2 Self-attention mechanism

There are many variations of the attention mechanism that deviates from the gen-
eral framework, one of which is self-attention mechanism proposed in [30]. The
goal that their paper aims to achieve is to improve sentence embeddings as well as
offer a way to interpret how these embeddings come to be. To obtain a fixed-size
vector that represents an input sentence of variable lengths, the common methods
are to take advantage of the last RNN hidden states or to use some pooling tech-
niques over the hidden states. As mentioned before, it is hard for the RNN model
to carry semantic information for too many time steps. Therefore, the authors
introduce a self-attention mechanism that automatically learns which parts of the
input sentence is semantically important to encode into its embedding using the
input itself. After applying an RNN to the input sequence, we obtain the sequence
of hidden states:

H = {h1, h2, ..., hn} (2.12)

which can be seen as a matrix H ∈ Ru×n, u is the size of each hidden state and n is
the length of the sequence. Then, the attention weights for H are calculated based
on H itself, given the weight matrix W ∈ Rr×u and the weight vector w ∈ R1×r , r
is a hyperparameter:

α = softmax (w tanh(WH)) (2.13)

The embedding that represents an input sentence is the weighted sum of the hidden
states:

e =
n∑

i=1

αihi (2.14)

By thoroughly evaluating the proposed self-attention mechanism on three differ-
ent tasks, [30] shows the effectiveness of the technique. Furthermore, this method
can be apply for much longer input such as paragraphs or documents.

2.2 Employed Deep learning techniques

2.2.1 Rectified Linear Unit activation function

One of the main reasons why deep learning is such a powerful tool is that it can
model highly complex non-linear functions by using non-linear activation func-

17

tions. Without these functions, a neural network, no matter how deep, is only a
linear transformation from the input to the output, which is not very useful.

0

f(x)

x

f(x) = x

Figure 2.5: The Rectified Linear Unit function.

Rectified Linear Unit (ReLU) [37] is a common activation function due to
its simplicity and nearly-instant calculating speed. Since it is unbounded, large
values are not saturated (e.g. sigmoid function saturates large values to 1), which
makes it efficient and become a recommended choice when building neural net-
works [14]. ReLU function is defined as [37]:

y = max(0, x) (2.15)

Figure 2.5 is the graphical representation of the Equation 2.15. One variant
of ReLU that is also mentioned in [37] is Noisy Rectified Linear Unit (NReLU)
with the formula as follows:

y = max (0, x +N (0, σ(x))) (2.16)

where N (0, σ(x)) is the Gaussian noise with zero mean and variance σ(x).

2.2.2 Mini-batch gradient descent

As mentioned in 1.2, model training is just following a procedure to update the
parameters so that the loss function can be minimized. It is basically an optimiza-
tion problem. The engines of back-propagation are gradient descent and the chain

18

rule. Let E(W) be the loss function with W represents real-valued parameters,
the gradient descent algorithm can be described as follows:

1. Initialize W =W0 randomly or selectively.

2. Update W until the loss value, E(W), is acceptable using the following equa-
tion:

Wk =Wk−1 − ε∇WE(W) (2.17)

where k is an iterator, k ≥ 1; ε , which is a hyperparameter, is a scalar that
determines the step size (or learning speed) when updating.

Batch gradient descent is simply using all the training examples when up-
dating W. One advantage of this method is that the direction towards an opti-
mal point is stable since all the data is considered. However, with large training
dataset, which is a common case nowadays, calculating gradient descent for the
entire dataset is expensive or even infeasible, not to mention that we might not
be able to load the dataset into the memory all at once. At the opposite end, we
have stochastic gradient descent (SGD), where instead of using all examples, only
one is used to update W. Thus, SGD is much faster than batch gradient descent
at each step, but it would take more steps before converging. Because SGD does
not require all the data must be loaded altogether, it is suitable for big dataset and
problems in which the model is constantly changing (e.g. online learning).

Inheriting the ideas from both batch gradient descent and SGD, mini-batch
gradient descent divides the training data into small batches, each contains n data
points, n is greater than 1 and much smaller than the total number of examples.
One iteration through all the batches is called an epoch. Both SGD and mini-
batch gradient descent require shuffling the data before training. The updating
procedure is the same for mini-batch gradient descent except each batch is used at
one step. For this reason, mini-batch gradient descent is faster than batch gradient
descent and its converging direction is more stable than SGD.

2.2.3 Adaptive Moment Estimation optimizer

Adaptive Moment Estimation (Adam) [26] is one of the variants of gradient de-
scent. Adam is an robust algorithm because it is easy to implement, does not
requires much memory, only uses the first order derivative, scales well the data

19

and parameters. Unlike the vanilla gradient descent algorithm described in 2.2.2,
which has a fixed learning speed ε , Adam uses adaptive procedure to calculate an
appropriate learning rate for each parameter. The Adam algorithm is represented
in Algorithm 2.1.

Algorithm 2.1: Adam algorithm [26].
Input : Step size α; exponential decay rates for moment estimates

β1, β2 ∈ [0, 1); stochastic objective function f (θ); the initial
parameter vector θ0.

Output: Resulting parameters θt

1 m0 ← 0

2 v0 ← 0

3 t ← 0

4 while θt not converged do
5 t ← t + 1
6 gt ← ∇θ ft(θt−1)

7 mt ← β1 · mt−1 + (1 − β1) · gt

8 vt ← β2 · vt−1 + (1 − β2) · g2t
9 m̂t ← mt/

(
1 − βt

1

)
10 v̂t ← vt/

(
1 − βt

2

)
11 θt ← θt−1 − α · m̂t/

(√
v̂t + ε

)
12 end
13 return θt

According to [26], the hyperparameters α, β1, β2, ε have reasonable default
settings as 0, 001, 0, 9, 0, 999, and 10−8 respectively. These values are advisable
for many evaluated machine learning problems. In practice, Adam works quite
well and it is more favorable than other optimizing methods.

2.2.4 Dropout

In many cases where there is insufficient amount of training data, a neural network
with too many layers and parameters can “remember” all the training instances so
that it can predict really well on the training dataset. However, when given new
examples, the model performs poorly. This problem is called “overfitting” and it
is detrimental to the model’s performance because it makes the model much more

20

sensitive to noise and decrease the model’s ability to generalize.

Dropout [43] is one of the techniques that can be used to mitigate overfit-
ting problem. The core idea of Dropout is randomly and temporarily removing
some units in the neural network along with their associate connections during
the training phase. Every time dropout is applied, a new network is attained with
less connections between layers than the original network. If the total number of
units that a neural network has is n, then the number of possible new networks is
2n. However, all the parameters are shared among these networks. According to
[43], training a neural network with Dropout is equivalent with training 2n smaller
networks where not every network is guarantee to be trained.

Dropout can help reduce overfitting because it weakens the dependency of
units, so called “co-adaptation” from the original paper. The units are forced to
learn independently but can still cooperate with other random units. Dropout has
been proven to be greatly effective when many proposed models for object clas-
sification, speech recognition, biomedical data analysis, etc. were significantly
improved and even became state-of-the-art models.

2.2.5 Early Stopping

Besides Dropout, early stopping is another technique that can be used to restrain
overfitting. The visual cue for overfitting is that when we plot out the training and
validating loss over time, the model starts to overfit right after the point where the
validating loss hits the global minimum while the training loss keeps decreasing.
By observing this behaviour, the idea for early stopping strategy is quite simple:
keeping track of the best version of the model parameters and revert to it when the
training process stops improving for some time. The early stopping algorithm is
formally represented in Algorithm 2.2.

Early stopping has many beneficial qualities compared too some other reg-
ularization techniques. As shown in Algorithm 2.2, it is fairly simple yet so ef-
fective. Moreover, it does not require changing the training process like some
methods that modify the objective function. Instead, it is only an add-on that can
work well with other strategies.

21

Algorithm 2.2: The early stopping algorithm [17].
Input : The number of training steps before evaluation n; the number of

times willing to suffer lower validating error before giving up; the
initial parameters θ0

Output: Best parameters θ∗, best number of training steps i∗

1 θ, θ∗ ← θ0

2 i, j, i∗ ← 0

3 v ←∞

4 while j < p do
5 Update θ for n steps.
6 i ← i + n
7 v′← ValidationSetError(θ)

8 if v′ < v then
9 j ← 0

10 θ∗ ← θ

11 i∗ ← i
12 v ← v′

13 else
14 j ← j + 1
15 end
16 end
17 return θ∗, i∗

2.3 Pairwise Learning to Rank approach

There are many problems in Information Retrieval can be regarded as ranking
problems such as document retrieval, sentiment categorization, definition map-
ping, etc. Hence, ranking methods are the key to IR. They have been actively re-
searched for decades with various algorithms have been proposed [31]. A research
topic called “learning to rank” emerged which explores several ranking techniques
using machine learning as the engine. Generally, learning to rank means building
and training a ranking model using data with the objective is to sort a list of in-
stances using some criteria such as the degree of relevance or importance. For the
problem of document retrieval given a query, a common solution is to: (1) convert
the query and documents into feature vectors, (2) use a similarity metric on these

22

vectors, and (3) sort the documents based on their scores [4]. Documents and
queries can be in any type of formats, e.g. text, images, audio, web pages, etc. as
long as they can be embedded into vector representations.

There are three approaches to learning to rank: pointwise, pairwise, and list-
wise approach. Each of them defines a different input/output space and use a
different objective function [31]. Among them, pairwise approach is the most
common one and will be discussed in more detail.

In pairwise methods, while training, the model takes in two documents as
one training instance (instead of one as in pointwise or a list as in listwise) and
outputs the corresponding scores for them. The prefer order of two documents
depends on how the metric is defined but mostly, the document with the higher
score is more preferred than the other one and it will be labeled as positive, thus,
the other will be negative. As stated in [4], the ranking model is represented as
a scoring function f (q, d) with q and d are the embeddings of the query and the
document (positive or negative), respectively. With the input tuple of (q, d+, d−),
the model needs to be selected so that f (q, d+) > f (q, d−), meaning that the score
for a positive document should be higher than the score for a negative document.
This goal is the reason for the margin ranking loss function introduced in [21]:

J =
∑

(q,d+,d−)∈D

max (0, α − f (q, d+) + f (q, d−)) (2.18)

withD is all the training tuples in the dataset; α is the margin value which enforces
the score difference between positive and negative document. The model will then
learn to differentiate the positive and negative document by at least α.

Pairwise learning to rank approach is not only used in NLP for problems
like question answering [1, 5] but also used in computer vision, especially in face
verification problem [40]. In this problem, instead of the margin ranking loss
function, a different but similar loss function is used called triplet loss function:

J =
N∑
i

max
(
0, α +

g (
xa

i
)
− g

(
xp

i

)2
2
−

g (
xa

i
)
− g

(
xn

i
)2

2

)
(2.19)

with N is the number of all training instances; α is still the margin value; g(·)

is embedding function which learns to map the anchor image xa
i , the positive

image xp
i , and the negative image xn

i into the same vector space. Although their
formulas look different, their ideas are the same. The margin ranking loss function
can be considered as a more general case of the triplet loss function since function

23

f (·) models both the embedding function and the scoring metric. In the case of
triplet loss function, the scoring metric uses Euclidean distance. The smaller the
distance, the more prefer the object is.

When applying pairwise ranking, it is essential to select appropriate training
instances. Because of how the loss function is defined, the model will try to
learn so that f (q, d+) > f (q, d−). If the training example (q, d+, d−) has already
satisfied this condition, it will not improve the model, only slow down the training
process. Therefore, to speed up training, only training examples that can actually
impact the learning process, i.e. T = {(q, d+, d−) | f (q, d+) − α < f (q, d−)},
should be chosen.

2.4 Related work

Unlike closed-domain QA, which is restricted to a certain domain and requires
manually constructed knowledge bases, open-domain QA aims to answer ques-
tions about basically anything [27]. Hence, it relies on world knowledge in the
form of large corpora, e.g. Wikipedia. Many datasets have been proposed, such
as SQuAD [38], WikiReading [22], or recently, QUASAR dataset [12], that facil-
itate the development of open-domain QA systems. The most well-known dataset
is SQuAD which consists more than 100,000 questions derived from Wikipedia.
It was proposed to help develop models that are capable of understanding and
reasoning to answer open-domain questions correctly. Because the dataset has
already provided the context document for each question and the answer is guar-
anteed to appear in the context, SQuAD is only used to train machine readers.
However, since a complete open-domain QA system composes of a document re-
triever and a machine reader module, SQuAD or such dataset alone will not be
enough to promote building an entire system without exploiting other sources.
Having recognized the problem, Dhingra et al. present QUASAR dataset [12].
This dataset can be divided into two sub-datasets, each of which targets a differ-
ent style of question answering. The QUASAR-S dataset has more than 37,000
fill-in-the-gap type of queries constructed using Stack Overflow as the source.
Therefore, it can be considered as closed-domain dataset. On the other hand, the
QUASAR-T dataset includes about 43,000 open-domain trivia questions gathered
from various sources. It supports both the document retrieving and reading pro-
cess by providing a list of documents associated with each question-answer pair.

24

The document retriever can be trained to rank these documents and return only
some highest-scored ones.

Thanks to the advance of deep learning, especially, the emergence of atten-
tion mechanism there has been momentous progress in machine reading compre-
hension task. Wang et al. [47] propose a mechanism called Gated Attention-based
recurrent networks which is employed prior to a self-matching layer which also
uses attention to extract important evidence from the documents. Specifically, the
model has four main parts which are a question/document encoding component,
a gated-matching layer, a self-matching layer, and a pointer network. Their ex-
periments done on the SQuAD dataset shows promising results since the model
placed first on the official leaderboard of SQuAD. Another gated-attention is used
in [11] where Dhingra et al. exploit a bi-directional Gated Recurrent Unit for
question/document encodings at the beginning of each layer in their multi-hop
architecture. Then, they apply a Gated-Attention module for each token of the se-
quence. Cui et al. [9] introduce Attention-over-Attention (AoA) reader in which
another attention layer is introduced on top of document-level attention over indi-
vidual query words. The model tries to solve cloze-style reading comprehension
problem by take in account the interactive information between the query and the
document. This work also shows that the query representation is essential and it
requires more attention. After they obtain the contextual embeddings of the ques-
tion and the document, a pair-wise matching matrix is calculated. Then, the AoA
mechanism is applied in which the latter attention layer determines the importance
of each previous individual attention. Their experiment shows exceeding results
compared to various state-of-the-art systems. Later, Seo et al. [41] focus even fur-
ther on the question-aware context representation by proposing the Bi-directional
Attention Flow (BiDAF) network which is a hierarchical multi-stage architecture
for document representation at various levels of abstraction. The model contains
character-level, token-level, and contextual level information. The attention vec-
tor is calculated every time step, combining with the embeddings of the previous
layers, flow through the model, hence, creating an attention flow. This method also
produces state-of-the-art results for SQuAD dataset at the time of submission.

Besides the methods that are proposed to deal only with machine compre-
hension task as reviewed previously, there are some full open-domain QA sys-
tems that contains both a document retriever and a machine reader. One of the
most well-known systems is DrQA [7]. In DrQA, the reader comprises of a para-
graph encoding layer which is a multi-layer bi-directional long short-term mem-

25

ory (BiLSTM) applied on a selective feature set, a question encoding layer that
learns a single vector representation of the question, and two classifiers trained
independently for predicting the boundaries of the answer span. For fast retrieval
speed, DrQA use a simple TF-IDF weighted bag-of-word vectors technique to se-
lect relevant documents. This in turn limits the retrieval performance and makes
room for more improvement. This thesis utilizes the Reader from DrQA for the
machine reading module and proposes a better document retrieval method. Hence,
the detail of DrQA’s Reader will be discussed in Chapter 3.

While in most open-domain QA systems, document retrieval and machine
comprehension are treated as two separated tasks and trained independently, the
system in [46], which is called R3, is designed to have both of these modules
integrated as one single model that can be trained in a joint manner. Another
difference between [46] and many other recent open-domain QA papers is that in-
stead of focusing only on the machine reader, the authors in [46] acknowledge the
importance of the document retriever as well. They point out that the performance
of the overall system depends a lot on the document retriever because with a poor
retriever component, the reader cannot extract the correct answer afterward. As
the name suggests, R3 or Reinforced Ranker-Reader contains a Ranker (document
retriever module) and a Reader (machine reader module), to which reinforcement
learning technique is applied. They both use input produced by Match-LSTM ar-
chitecture [45]. The Ranker is then trained with reinforcement learning to provide
probability distribution of documents. The reward is how well the Reader per-
forms on the top-ranked documents. This creates a link between two components
and provides a signal to the Ranker so that it is aware of the end performance
while still learning. Compared to the common ranking methods such as TF-IDF
weighting scheme [7], the Ranker in [46] is more advanced and efficient. The
Reader is trained using gradient descent to predict the boundary of the answer
span in the documents. R3 has state-of-the-art results in both document retrieval
and machine comprehension task.

Although they have been shown to be highly efficient, in open-domain QA
setting, these reading comprehension models depend heavily on document re-
trieval to acquire relevant documents. For example, the reading accuracy (ex-
act match) of GA (Gated-Attention) model [11] on QUASAR-T test set is 60%
but when considering the retriever’s performance, the overall accuracy drops to
26.4% [12]. Therefore, the focus is now shifting to improving document retrieval
process [7, 46].

26

Chapter 3

Material and Methods

As discussed in Chapter 1, the typical pipeline of an open-domain QA system con-
sists of a Document Retriever, which handles the document retrieval task, and a
Document Reader, which deals with the machine comprehension task. Following
this framework, our system also comprises of those two modules with the main
focus is on the Document Retriever. Concretely, the Document Retriever is an
end-to-end deep learning model that can be divided further into four components:
(1) an Embedding Layer for mapping each word in the questions and documents
into a vector space, (2) a Question Encoding Layer and (3) a Document Encod-
ing Layer that produce the final representations of the questions and documents,
respectively, and (4) a neural-based Scoring Function for learning an effective
similarity measurement between two fixed-size vectors. To exploit the power of
our Document Retriever in an open-domain QA setting, we utilize the Document
Reader from DrQA [7] for extracting the answer from retrieved documents.

3.1 Document Retriever

In several previous works [41, 42, 47] on machine comprehension task, the infor-
mation from the question and document are fused together to form question-aware
document representations. Although, the exact methods that were used in these
research differ quite a lot, the core idea of using question-document combined sig-
nals is intuitive because neither the document nor the question alone would help
finding the answer. Moreover, a document might contain lots of information and it
would be redundant if all of these information is compressed into a fixed-size vec-

27

QUASAR-T test set is 60% but when considering the retriever’s

performance, the overall accuracy drops to 26.4% [7]. Therefore,

the focus is now shifting to improving document retrieval process

[3, 20]. While the Document Retriever in [3] is relatively simple,

R3 ranker [20] is jointly trained with the reader using

reinforcement learning to form an end-to-end open-domain QA

system. R3 has state-of-the-art results in both document retrieval

and machine comprehension task.

Inheriting the idea of using attention mechanism to learn the

representation of documents [4, 21] and pair-wise learning to rank

approach [2], we develop an advanced document retriever that

empowered by ranking question-aware self-attentive (QASA)

document representations. We then integrate it with the Document

Reader from [3] to have a complete open-domain QA system that

can be thoroughly evaluated and compared with other methods.

3. PROBLEM STATEMENT
Open-domain QA systems usually comprise of two modules: a

Document Retriever and a Document Reader [3]. Given a

question 𝑞 , the Document Retriever acquires top-𝑘 documents

from a search space by ranking them based on their relevance to

𝑞. Let 𝐷 represent all documents in the search space, the set of

top-𝑘 highest scored documents is:

𝐷⋆ = argmax
𝑋∈[𝐷]𝑘

(∑ 𝑓(𝑑, 𝑞)

𝑑∈𝑋

) (1)

where 𝑓(⋅) is the scoring function. The Document Reader takes 𝑞

and 𝐷⋆ as input and produces an answer 𝑎 which is a text span in

some 𝑑𝑗 ∈ 𝐷⋆ that gives the maximum likelihood of satisfying the

question 𝑞.

4. MATERIAL AND METHODS
Following the conventional pipeline, our system consists of a

Document Retriever and a Document Reader. The Document

Retriever is an end-to-end deep learning model that can be divided

further into four components: (1) an Embedding Layer for

mapping each word in the questions and documents into a vector

space, (2) a Question Encoding Layer and (3) a Document

Encoding Layer that produce the final representations of the

questions and documents, respectively, and (4) a neural-based

Scoring Function for learning an effective similarity measurement

between two fixed-size vectors. To exploit the power of our

Document Retriever in an open-domain QA setting, we utilize the

Document Reader from DrQA [3] for extracting the answer from

retrieved documents.

4.1 Document Retriever
In several previous works [17, 18, 21] on reading comprehension

task, the information from the question and document are fused

together to form question-aware document representations.

Inspired by this idea and the advance of attention mechanisms, the

final document encoding of our model is produced by applying a

simple self-attention mechanism that conditioned not only on the

document itself but also on the question encoding. We

hypothesize that this question-aware self-attentive document

encoding layer will learn better representations than the one which

does not take the question information into account. Our

Document Retriever is depicted in Figure 1.

4.1.1 Embedding Layer
An embedding layer (EL) is commonly used as the first layer in a

deep learning model in order to solve various natural language

processing (NLP) problems [22]. It assigns a distributional vector

to each token in the input sequence which can be further

processed by subsequent layers. Our model uses token-level and

character-level embeddings to capture both semantic and

morphological information of words. All parameters in this layer

are shared between questions and documents to maximize the

representation power.

Token Embedding: After the pre-processing step, each token is

mapped to its embedding by the mean of a look-up table. We use

the pre-trained English word vectors from fastText [9], in which

they employ continuous bag-of-words (CBOW) [15] with

position-weights.

Character Embedding: The use of character embedding has been

applied by many other works [6, 17, 21] for its capability of

handling out-of-vocabulary (OOV) problem. In this paper, let 𝑉𝐶

be the character set, the character embedding matrix 𝐂 ∈ ℝ|𝑉𝐶|×𝑛

are first created randomly by Glorot initialization [8] and then

fine-tuned as trainable parameters of the model. For each token 𝑡,

using a look-up table, we can obtain a sequence of character

embeddings 𝐓 = {𝒄1, 𝒄2, . . . , 𝒄|𝑇| }, 𝒄𝑖 ∈ 𝐂 . A single layer of

BiLSTM [11] is then applied on 𝐓 to produce character-level

embedding 𝒆𝑐:

𝒆𝑐 = �⃗⃗� |𝐓| ⊕ �⃗⃗⃖�|𝐓| (2)

where ⊕ is the concatenating function; �⃗⃗� |𝐓| and �⃗⃗⃖�|𝐓| are the last

hidden states of the forward and backward direction, respectively.

Given a sequence of tokens 𝑃 = {𝑡𝑖}𝑖=1
|𝑃|

, which is either a

question or a document, the output of EL is a sequence of

embeddings 𝐄 = {𝒆𝑖}𝑖=1
|𝑃|

, in which:

𝒆𝑖 = 𝒆𝑖
𝑡 ⊕ 𝒆𝑖

𝑐 (3)

where 𝒆𝑖
𝑡 is the pre-trained token embedding, and 𝒆𝑖

𝑐 is the

character embedding of 𝑡𝑖.

Figure 1. The architecture of the Document Retriever.

.

𝑡1
𝑞

𝑒1
𝑞

𝑡|𝑄|
𝑞

𝑒|𝑄|
𝑞

𝑡1
𝑑

𝑒1
𝑑

𝑡2
𝑑

𝑒2
𝑑

𝑡|𝐷|
𝑑

𝑒|𝐷|
𝑑

BiLSTM BiLSTM BiLSTM BiLSTM BiLSTM

ℎ𝑞 ℎത1 ℎത2

ℎത|𝐷|

𝛼1

𝑐

𝑑𝑒 𝑞𝑒

𝑞𝑒 ⊕ 𝑑𝑒 ⊕ (𝑞𝑒 ⊙ 𝑑𝑒) ⊕ |𝑞𝑒 − 𝑑𝑒|

𝑠

Question Document

Em
b

e
d

d
in

g
La

ye
r

En
co

d
in

g
La

ye
r

Sc
o

ri
n

g
Fu

n
ct

io
n

𝑎𝑞

𝛼2 𝛼|𝐷|

Figure 3.1: The architecture of the Document Retriever.

tor while only a small part of the document is enough to answer correctly. This is
also the reason why attention mechanisms are widely adopted to encode the doc-
uments. Inheriting all of these ideas, the final document encoding of our model is
produced by applying a self-attention mechanism that conditioned not only on the
document itself but also on the final question encoding. We hypothesize that this
question-aware self-attentive document encoding layer will learn better represen-
tations than the one which does not take the question information into account.
We named our retriever QASA (short for Question-Aware Self-Attentive) to ac-
knowledge the key ideas as well as the methods that have been applied.

28

Figure 3.1 shows the architecture (bottom-up) of the Document Retriever’s
network with one question and one document. In this case, the network will out-
put a single score s for the document with respect to the question. With pairwise
learning to rank approach mentioned in 2.3, the input comes in 3-tuple of a ques-
tion and two documents. Hence, the same document branch of the network will
be applied on both documents simultaneously and two independent scores will be
produced while training. The following sections will explain each layer in greater
detail.

3.1.1 Embedding Layer

An embedding layer (EL) is commonly used as the first layer in a deep learning
model in order to solve various NLP problems [50]. It assigns a distributional
vector to each token in the input sequence which can be further processed by sub-
sequent layers. This layer can be considered as the first level of abstraction in the
question/document representation learning process. Our model uses token-level
and character-level embeddings to capture both semantic and morphological in-
formation of words. Although it is not necessary to have both type of embeddings,
using them in combination has become a best practice since they compensate each
other’s weaknesses. In this low-level embedding layer, there is no underlying lin-
guistic difference between the question and the document. Therefore, to maximize
the representation power of this layer, the same parameters are used for both ques-
tion and document. Figure 3.2 shows the architecture of EL applied to each token.

Pre-process. One mandatory step before converting the tokens into vectors is to
extract all tokens from the raw documents in the first place. While the objective
of this task is simple, there is no trivial way to do this with absolute accuracy.
In written texts, the tokens are mixed with many ambiguous characters that re-
quired sufficient understanding of the language to decide where each token starts
and ends. To simplify this problem, characters that are not word nor number
characters are removed and the texts are converted to lowercase format. If the
document contains an URL, that URL would become one lengthy token and non-
informative. So, a simple template matching method is applied to find all URLs
and replace them with the word “url”. At this point, a document is still one string

29

Figure 3.2: The architecture of the Embedding Layer.

of text. We use the best English tokenizer model from spaCy 1 to obtain a list of
tokens from a document.

Token Embedding. After the pre-processing step, each token is mapped to its
embedding by the mean of a look-up table. We use the pre-trained English word
vectors from fastText [18], in which they employ CBOW [35] with position-
weights. These vectors are trained on Common Crawl and Wikipedia and they
have 300 dimensions. The vocabulary size is more than 2.5 million tokens. We
choose not to tune these embeddings while training since doing so with a small
dataset can actually disturb the overall structure of the trained vectors and pollute
the general contextual representation of tokens.

1https://spacy.io/models/en#en core web lg

30

Character Embedding. Although the vocabulary size of the token embeddings
is fairly large (2.5 millions), there is no guarantee that all tokens that the model
might encounter would fall under that set. This problem is known as out-of-
vocabulary problem and character embedding has been applied to handle it. Dif-
ferent from the Token Embedding, we do not use any pre-trained Character Em-
bedding. Since there are much less characters than tokens, the training data size
does not need to be as large. After being pre-processed, the documents only con-
tain word and number characters, hence, there are 36 characters in total. Besides,
for characters, there is no semantic structure among them to preserve. So, it is
best to learn their vector representations directly from the training dataset.

In this paper, let VC be the character set, the character embedding matrix
C ∈ R|VC |×n are first created randomly by Glorot initialization [16] and then fine-
tuned as trainable parameters of the model. For each token t, using a look-up
table, we can obtain a sequence of character embedding T =

{
c1, c2, ..., c |T|

}
,

ci ∈ C. A single layer of bi-directional long short-term memory (BiLSTM) [23]
is then applied on T to produce character-level embedding ec:

ec =
−→
h |T| ⊕

←−
h |T| (3.1)

where ⊕ is the concatenating function;
−→
h |T| and

←−
h |T| are the last hidden states of

the forward and backward direction, respectively.

Final Embedding. Given a sequence of tokens P = {ti}
|P |
i=1, which is either a

question or a document, the output of EL is a sequence of embeddings E = {ei}
|P |
i=1,

in which:
ei = et

i ⊕ ec
i (3.2)

where et
i is the pre-trained token embedding, and ec

i is the character embedding of
ti. The embedding matrix E now encompasses the input information of a sequence
(e.g. question or document) and will be used as input for the following layers.

3.1.2 Question Encoding Layer

This layer aims to learn the fixed-size vector representation of the questions. Nor-
mally, the questions’ lengths are much shorter than the documents’. Also, since
the factoid questions represent the information needs, they are usually concise and
explicit. Unlike the documents, each question only entails one specific topic that

31

is being asked about. For all of these reasons, it is needless to complicate the
question encoding process with sophisticated mechanisms that might be prone to
overfitting. To produce a single vector for a question, we apply one BiLSTM layer
to Eq =

{
e

q
i

} |Q |
i=1, the output of EL, with |Q | is the question’s length:

−→
Hq =

−−−−−→
LSTM (Eq) =

{−→
h

q
i

} |Q |
i=1

(3.3)

←−
Hq =

←−−−−−
LSTM (Eq) =

{←−
h

q
i

} |Q |
i=1

(3.4)

This BiLSTM is used to model the contextual information. The last hidden states
of the forward and backward LSTM are concatenated into one vector:

hq =
−→
h

q
|Q | ⊕

←−
h

q
|Q | (3.5)

Then, two fully-connected layers are placed on top of this vector with the output
of the first one is activated using ReLU function:

aq = ReLU
(
W(1)hq + b(1)

)
(3.6)

q =W(2)aq + b(2) (3.7)

where W(1), W(2), b(1), and b(2) are trainable weights and biases of the model. At
this step, we obtain the final encoding, namely q, of the input question.

3.1.3 Document Encoding Layer

First of all, to take advantage of the contextual representing power, we use the
same BiLSTM from the Question Encoding Layer (QEL) along with its parame-
ters:

Hd =
←−−−−−−→
BiLSTM

(
Ed

)
=

{−→
h d

i ⊕
←−
h d
|D|−i+1

} |D |
i=1
=

{
hd

i

} |D|
i=1 (3.8)

However, different from its use in QEL where the last hidden states are combined,
all hidden states of the BiLSTM in this layer are combined with the question
encoding q. For humans, in order to decide whether a document is relevant to a
particular question, the meaning of that question should always be kept in mind
while we read. Following this intuition, this layer utilizes q, which embodied the
general meaning of the question, to form the question-aware hidden states, H, by
concatenating q with the hidden states outputted by a BiLSTM as follow:

H =
{
hd

i ⊕ q
} |D|

i=1 =
{
hi

} |D|
i=1

(3.9)

32

where |D| is the number of tokens in the document; Ed =
{
ed

i

} |D|
i=1 are the word

embeddings from EL. By integrating the question encoding with the document’s
hidden states as in Eq. 3.9, the document encoding is conditioned on the question,
such that it allows the model to produce distinctive representations of the same
document depends on the question given.

As mentioned before, a document contains many sentences while frequently,
for a factoid question, one sentence or even a part of a sentence is enough to
produce the answer. In other words, many pieces of information can be extracted
from a document. Some information might be useful for a particular question
while others might not. It is favorable to only encode useful information that
is most integral to the answer selection process. We achieve this by applying
self-attentive network [8] to Hd. It would make sense that the question signal is
also used to decide which part of the document is most relevant. Therefore, the
attention weights are calculated based on H where the document and question’s
information are both available:

ad
i = ReLU

(
Whi + b

)
(3.10)

u =
{
vᵀad

i + b
} |D|

i=1 (3.11)

α = so f tmax (u) (3.12)

with W ∈ Rm×(2z+l), v, b ∈ Rm, and b ∈ R are parameters, z and m are the number
of the hidden units in the BiLSTM and fully-connected layer respectively, l is
the question encoding size. Final representation of the document d is the linear
transformation of c, which is the weighted sum of the hidden states Hd:

c =

|D|∑
i=1

αih
d
i (3.13)

d =Wc + b (3.14)

with W, b are learnable parameters, αi ∈ α and hd
i ∈ H

d. It is worth noting that
d has the same size as q, i.e. l, so that they can be in the same vector space.

3.1.4 Scoring Function

After obtaining two fixed-size vectors, q for the question and d for the docu-
ment, their relevance is measured by a scoring function. Two most common mea-

surements are Euclidean distance:
√∑l

i=1 (qi − di)
2 and cosine similarity: q·d

‖q‖‖d‖ .

33

With Euclidean distance, the smaller the value the closer the vectors, hence, the
more relevant. On the contrary, with cosine similarity, the cosine of the angle be-
tween two vectors is calculated, thus, the values are bounded between −1 and 1.
The vectors are more similar if the value gets closer to 1. Although being effec-
tive in some problems, these functions are pre-defined and fixed which limits their
power to measure the interaction of multi-dimensional vectors. We decide to let
the model learn the scoring function itself so that this function would adapt to the
vectors q and d outputted from previous layers.

Our scoring function is a neural network comprises of two feed-forward lay-
ers, which is similar to the idea of applying matching methods to extract relations
between two vectors in [8]. Since our Document Retriever can be trained in an
end-to-end fashion, the error is backpropagated through the scoring function and
the encoding layers, which enables the model to learn better similarity measure-
ment as well as question/document representations simultaneously.

Much the same as [8], our feature vector for the scoring function is also a
concatenation of the question encoding q, document encoding de, their element-
wise product, and their absolute element-wise difference. Especially, the last two
features partially simulate how the cosine similarity and Euclidean distance are
calculated. This helps the convergence process of the scoring function. Given the
two encodings, their similarity score can be calculated as follow:

x =

q

d

q � d

|q − d |

(3.15)

a = ReLU(Wx + b) (3.16)

s = w · a + b (3.17)

where � is the Hadamard product; W ∈ Rr×4l , w, b ∈ Rr , and b ∈ R are trainable
parameters of the network (l is the encoding size, r is the number of hidden units);
scalar s is the similarity score between q and d.

3.1.5 Training Process

The Scoring Function is the last layer of the network. In the forward pass, given
a question and a document, the network will produce a score at the end. What

34

is expected of the model is that the relevant documents will receive higher scores
than the irrelevant ones. For that purpose, we apply pairwise ranking approach
as discussed in 2.3. Each training example is a 3-tuple of question, positive and
negative document. The Document Encoding Layer is used twice in parallel to
produce the encodings for the positive and negative document accordingly. Let S
be the scoring function modeled by the Scoring Function, the Document Retriever
model can be trained by minimizing the margin ranking loss [4]:

L = max
(
0, 1 − S(q, d+) + S(q, d−)

)
(3.18)

where d+ and d− are the encodings of the positive and negative document, re-
spectively. This loss function, the error rate is positive when d+ has lower score
than d−. Otherwise, this value is 0 and the parameters of the model will not
be updated. However, it does not make sense if the model stops learning when
S(q, d+) = S(q, d−). To prevent this situation, the margin value 1 is used to ensure
that the model would still be improved upon when S(q, d+) − S(q, d−) < 1.

The entire network, from the Embedding Layer to the Scoring Function
can be trained using backpropagation and mini-batch gradient descent. We use
Adam optimizer to perform this training procedure. To reduce overfitting prob-
lem, Dropout and early stopping technique are also employed. The margin ranking
loss function helps train the model to achieve adept question/document encodings
and an effective scoring function at the same time by being a single objective that
every parameters are tuned towards.

By using the margin ranking loss function, it is paramount to define what
makes a document positive or negative in the first place. This depends largely on
the training dataset. For the fact that we share the same problem as [46] where
the ground-truth labels for the ranking task are not available, we employ their idea
of pseudo labels. With the answers are the labels of the machine comprehension
task, the documents at this step are labeled positive if they contain the exact match
of the answer span.

How the training examples are selected is also crucial to the training process.
For each question, there is usually a handful of positive documents while all the
other ones are considered negative. It is infeasible to generate all possible training
instances and train the model with them. This would only waste resources since
the many of the negative documents are too easy to discriminate from the positive
ones and will not contribute to the learning process. To reduce the number of neg-
ative documents, the simplest way is to randomly chose only n instances but it still

35

Algorithm 3.1: Pseudocode of the training procedure.
Input: Number of epochs with no improvement before stopping training

(patience) p; Maximum number of negative documents n.
1 best dev acc← 0

2 count patience← 0

3 while True do
4 if count patience == 0 then
5 (Training examples generated by randomly selecting n negative

documents, each is paired with all positive ones.)
6 else
7 (Training examples generated by selecting top-n highest-scored

negative documents using the current saved model, each is paired with
all positive ones.)

8 end
9 (Train the model with mini-batch gradient descent.)

10 dev acc← (the accuracy on the development set)
11 if dev acc > best dev acc then
12 (Save the current model.)
13 count patience← 0

14 best dev acc← dev acc

15 else
16 count patience← count patience + 1
17 if count patience > p then
18 break
19 end
20 end
21 end

does not guarantee that these instances are helpful. To effectively train the model,
we need to provide examples that are hard enough by dynamically selecting the
highest-scored negative documents. Nonetheless, this approach requires all the
negative documents be processed with the latest set of parameters at every train-
ing step to find the top ones. While the model can be more capable, the training
process will be slowed down dramatically.

36

Algorithm 3.1 demonstrate how the training procedure works. The early
stopping mechanism is done by using the accuracy on the development set. To
speed up the training process but still provide challenging examples for the model,
we combine two negative sampling techniques: random and top-n. Normally,
n random negative documents will be selected, so the sampling process is done
quickly. However, when the model stops improving, current top-n highest-scored
negative documents are used. This helps the optimizing process overcome local
optima and keep improving since these are the most difficult, yet useful, training
instances.

3.2 Document Reader

As briefly mentioned in 2.4, DrQA [7] is a popular open-domain QA and thor-
oughly evaluated with multiple standard datasets. Instead of using various knowl-
edge sources as its previous works, DrQA only uses Wikipedia articles from which
the answer to a given factoid question is selected. Moreover, it is designed with
a clear pipeline approach which contains a Document Retriever and a Document
Reader as typical. Because of this, it is easier for successive research to reuse
and/or improve particular parts of the system. While the proposed Retriever is
fairly simple, the Reader is a sufficiently complex and effective deep RNN trained
for extracting answers span from a question and a list of documents. In order to
focus on improving the document retrieval process and still have a complete open-
domain QA system to evaluate the end performance, we utilize DrQA Reader and
integrate it with the proposed Document Retriever. The following discusses DrQA
Reader as well as the integration in a bit more detail.

3.2.1 DrQA Reader

After receiving a list of documents returned by the Retriever, the goal of the
Reader is to predict the boundary of the text span within these documents that
is most likely to be the answer to a given question. To tackle this, DrQA Reader
comprises of three main modules: (1) Paragraph encoding, (2) Question encoding,
and (3) Prediction.

37

Paragraph encoding. Since documents are usually lengthy which lessens the
efficiency of RNNs, they are divided into n paragraphs. The paragraph encoding
layer recognizes each paragraph p = {p1, p2, ..., pm}, which is a sequence of m
tokens, as one example and learns to convert it into a matrix representation with
each row is the embedding of a token. Firstly, the authors construct a feature
vector p̃i for each token pi by combining several information:

• The word embedding fe(pi), which is taken from the pre-trained Glove word
embeddings. Almost all these embeddings are kept fixed except 1000 most
common question words such as “what”, “when”, “how”, etc.

• The exact match indicator vector which contains three binary values signal
whether pi is in question q:

fem(pi) = {I(pi ∈ q), I (lowercase(pi) ∈ q) , I (lemma(pi) ∈ q)}

• Some other token features include part-of-speech (POS) tag, named entity
recognition (NER) tag and term frequency (TF) value:

ft = {POS(pi),NER(pi),TF(pi)}

• The aligned question embedding fa(pi) =
∑l

j=1 ai, j fe(q j), with q j is one of l
question words, ai, j is the attention score between pi and q j which is calcu-
lated as follow:

ai, j =
exp

(
α (fe (pi)) · α

(
fe

(
q j

)))∑l
k exp (α (fe (pi)) · α (fe (qk)))

where α(·) is a fully-connected feed-forward layer with ReLU as the activa-
tion function.

After obtaining a sequence of p̃i, a multi-layer bi-directional RNN is applied. The
output of the paragraph encoding layer is:

{p1, p2, ..., pm} = BiRNN ({ p̃1, p̃2, ..., p̃m}) (3.19)

Question encoding. Instead of producing a sequence of vectors, each of which
corresponds to a token, the question encoding outputs a single vector represen-
tation for the whole question q. The paper achieves this by employing an RNN

38

on the word embeddings of q to obtain {q1, ..., ql} = RNN (fe (q1) , ..., fe (ql)).
Then, the question embedding is q =

∑l
j b jq j with b j determines how much of

the corresponding word contributes to the final question vector:

b j =
exp

(
w · q j

)∑l
k exp (w · qk)

given the weight w.

Prediction. At this phase, the authors build two independent classifiers, one for
the answer span’s start position and one for its end position:

Pstart(i) ∝ exp (piWsq)

Pend(i) ∝ exp (piWeq)

The final answer prediction across all paragraphs is the sequence of tokens from
position i to position j such that Pstart(i) × Pend(j), i ≤ j ≤ i + k, is maximized,
where k is the maximum answer’s length allowed.

3.2.2 Training Process and Integrated System

The input for the Reader is a question, an answer, and a list of documents. A
requirement from DrQA while training is that at least one document in the list
must contain the exact match of the answer. This means that in the inference
phase, DrQA always outputs an answer even when the answer is not available in
the documents. How to prepare the list of documents for each training instance is
also important. One way is to use all positive documents. By doing this, the model
will learn to expect the answer to be presented in all of the provided documents
which is not a case in realistic situation. Besides, when the system is integrated,
the input documents of the Reader is the output of the Retriever, therefore, it does
not guarantee that all returned documents are positive.

To simulate the inference phase of system while training the Reader, it would
be best to present the model with the distribution of positive/negative documents
produced by the Retriever. We achieve this by running the trained Document
Retriever on the train dataset and then selecting 50 highest-scored documents.
This means that there is a mix between positive and negative documents and we

39

find that this combination in the training data boosts the Reader’s performance
greatly.

After the Document Retriever and Document Reader are trained, the system
is simply designed in a pipeline manner. In the QASA Retriever’s running phase,
for each question, all the documents in the database must be ranked by the net-
work. This is bad for scaling or even impractical when the database gets extensive.
One way to work around this is to use the QASA Retriever in conjunction with a
simpler and faster retriever module. Even a method like filtering out all documents
that do not have any overlap words with the question is able to reduce the number
of documents drastically with minimal accuracy drop. This simple retriever acts
as a loose filter and is applied before running the QASA Retriever.

40

Chapter 4

Experiments and Results

4.1 Tools and Environment

The Retriever is implemented using Python and TensorFlow1. TensorFlow is an
end-to-end open source platform for machine learning which is developed by
Google. It supports a comprehensive, flexible ecosystem of tools, libraries and
community resources that has powered many state-of-the-art research in machine
learning. The QASA Retriever’s source code can be found at:

https://github.com/trangnm58/QASA

as well as its detailed instructions on how to train and use the model. To per-
form the experiments, the models are trained using the environment configuration
presented in Table 4.1.

Table 4.1: Environment configuration.

Component Specification Quantity
CPU Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30GHz 2
RAM 16 GB DIMM ECC DDR4 @ 2400MHz 8
OS Linux -

1https://www.tensorflow.org/

41

https://github.com/trangnm58/QASA

4.2 Dataset

Both the Retriever and Reader are trained with the QUASAR-T dataset proposed
by [12] using the official splits provided. This standard dataset consists of 43, 012
factoid questions obtained from numerous sources. Each question is associated
with 100 pseudo-documents retrieved from ClueWeb09, a dataset that has about
one billion web pages. The long documents contain no more than 2048 charac-
ters and the short ones contain no more than 200 characters. These documents
have been filtered by a simple but fast retriever precedently and they now require
a more sophisticated model to re-rank them efficiently. The answers for the given
questions are free-form text spans, however, they are not guaranteed to appear in
the documents which are challenging for both ranking and reading model. Fig-
ure 4.1 shows an example of a question associated with an answer and a list of
pseudo-documents (contexts).

Question Lockjaw is another name for which disease
Answer tetanus

Contexts (partial) As the infection progresses , muscle spasms in the jaw

develop , hence the name lockjaw .

 The name comes from a common symptom of tetanus in

which the jaw muscles become tight and rigid and a person

is unable to open his or her mouth .

 Tetanus , commonly called lockjaw , is a bacterial disease

that affects the nervous system .

Figure 4.1: Example of a question with its corresponding answer and contexts

from QUASAR-T.

The statistics of QUASAR-T dataset are described in Table 4.2. As men-
tioned in 3.1.5, the dataset does not come with ground-truth labels for training
the Retriever. Therefore, considering a question, if any document in the list of
100 pseudo-documents contains the exact answer within its text body, it is con-
sidered a positive document, otherwise, it’s negative. Interestingly, there are in-
stances in the dataset where none of their associated documents is positive. In
these cases, the Retriever will always produce negative or unrelated documents.
We call this type of instances is invalid. In Table 4.2, “Valid” indicates the num-
ber of instances in which the ground-truth answer is presented in at least one of
the pseudo-documents. According to this, the upper bound for evaluating the per-
formance of the retriever and the reader is the ratio between the number of valid

42

instances and the total number of instances. Particularly, for the test set, this upper
bound is 77.37%.

Table 4.2: QUASAR-T statistics.

Train Validation Test
Total 37,012 3,000 3,000
Valid 28,838 2,297 2,321

To evaluate the quality of QUASAR-T dataset, the authors from [12] em-
ploy several methods ranging from the simplest heuristics to state-of-the-art deep
neural networks, and even acquire the output from human testers. According to
their reports, the best model, which is BiDAF [41], achieves 28.5% while the
human performance is 60.6%. It is worth noting that the human performance is
still 16.77% lower than the upper bound calculated previously, which signifies the
level of difficulty that the dataset presents.

As being an open-domain QA dataset, it is important for QUASAR-T to have
questions about a variety of domains (e.g. music, science, food, etc.) Although the
authors was unable to report a comprehensive categorization of the entire dataset,
however, given 144 questions randomly selected from the development set, the an-
notators were able to categorize 214 genres of questions (one question can belong
to multiple genres) and 122 entity-types of answers. The distribution the question
genres and answer entity-types are demonstrated in Figure 4.2.

People & Places 43.9 Location 26.4%

Movies & Musics 27.3 Person 21.5%

History & Religion 25.0 Number 5.8%

General 18.2 Other entity 28.1%

Math & Science 15.9 Date/time 3.3%

Language 11.4 Other 14.9%

Food 10.6

Arts 7.6

Sports 2.3

43.9

27.3

25.0

18.2

15.9

11.4

10.6

7.6

2.3

0 10 20 30 40 50

People & Places

Movies & Musics

History & Religion

General

Math & Science

Language

Food

Arts

Sports

Percentage (%)

Location
26.4%

Person
21.5%

Number
5.8%

Other entity
28.1%

Date/time
3.3%

Other
14.9%

Figure 4.2: Distribution of question genres (left) and answer entity-types (right).

43

4.3 Baseline models

Our model is compared with four other proposed models that have results for the
QUASAR-T dataset: GA [11], a reader that integrates a multi-hop architecture
with attention mechanism for text comprehension; BiDAF [41], which uses bi-
directional attention flow mechanism; R3 [46], a novel Ranker-Reader system that
is trained using reinforcement learning, and its simpler version, SR2 [46], trained
by combining two different objective functions from the ranker and reader. These
models have been discussed briefly in 2.4.

GA and BiDAF are machine readers while R3 and SR2 are complete open-
domain QA systems. Therefore, only R3 and SR2 have reported results for doc-
ument retrieval task that can be compared with our model. These two models
share the same Ranker (retriever) architecture; the only difference is that R3 uses
reinforcement learning to jointly train the Ranker and the Reader while SR2 trains
them separately just like our system. Their Ranker is also a deep learning model
but it is very much different from ours. They deploy a variant of the Match-LSTM
architecture [45] which produces the matching representations of the question and
its N corresponding documents, denoted as HRank =

{
HRank

i | 1 < i < N
}
. Then,

a standard max pooling technique is applied to each HRank
i to attain a vector ui.

These vectors are concatenated together and non-linearly transformed into C. The
predicted probability of containing the answer for each document is an element of
the vector γ, which is calculated by a normalization applied to C. Based on γ,
top-k documents is selected. Compared to our Retriever, the Ranker from [46]
is much more complex with many deep layers and parameters; even the Match-
LSTM layer alone is a convoluted network with six layers in total. This makes
training the model more difficult since it requires a significant amount of time and
resources. For the machine comprehension module, their Reader shares the same
Match-LSTM layer with the Ranker and uses the outputted matching representa-
tions to compute the probability of the start and end position of the answer.

Besides comparing our system with other methods proposed in different pa-
pers, we also develop an internal baseline model to demonstrate the effectiveness
of learning QASA document representations. In this model, we kickout the self-
attention mechanism from the full model. That is, the Document Encoding Layer
is constructed using the same architecture as the Question Encoding Layer. In
subsequent section, this baseline model will be referred to as kickout model.

44

4.4 Experiments

4.4.1 Evaluation Metrics

To evaluate the Document Retriever and be comparable with other proposed meth-
ods, we employ top-k accuracy metric from [46]:

Top-k =
1

N

N∑
i=1

I
(∃d+ ∈ D?i

)
(4.1)

which states that the top-k documents, D?i , for the i-th question are considered
correctly retrieved if they include at least one positive document, d+.

The performance of the Document Reader is also regarded as the perfor-
mance of the overall system since it is the last module of the pipeline. To evaluate
the Reader, two widely used metrics is applied, which are F1 and Exact Match
(EM) [38]. Specifically, F1 measures the overlap between two bags of tokens that
correspond to the ground-truth and predicted answer:

F1 =
1

N

N∑
i=1

|gi ∩ pi |

|gi |
(4.2)

where for the i-th example, gi and pi are sets of tokens in the ground-truth and the
predicted answer, respectively. While F1 allows the predicted answers to match
partially with the ground-truths, EM strictly compares the two strings to check
whether they are equal or not:

E M =
1

N

N∑
i=1

I (gi = pi) (4.3)

where gi and pi are the text strings of the ground-truth and predicted answer of the
i-th example, respectively.

4.4.2 Document Retriever

4.4.2.1 Hyperparameter Settings

There are many hyperparameters defined in order to train the QASA Retriever, all
of which are listed in Table 4.3. Most of these hyperparameters are chosen based
on the model’s performance on the validation set.

45

Table 4.3: Hyperparameter Settings

Component Hyperparameter Setting

Embedding
Token embedding 300
Character embedding 50
Character BiLSTM units 50

Question Encoding Encoding size 128

Document Encoding
Encoding size 128
Fully-connected units 200

Scoring Function Fully-connected units 50
Shared Layer Contextual BiLSTM units 150

General

Batch size 32
Optimizer Adam
Learning rate 0.001
Random initializer Glorot normal
Dropout rate 0.5
Top-n negative sampling 20

4.4.2.2 Results

The results for our Document Retriever is presented in Table 4.4 as it is com-
pared with two other models that have results reported for the QUASAR-T dataset.
As discussed, R3 [46] jointly trains the document retrieval and answer extrac-
tion module simultaneously using reinforcement learning. By the mean of the re-
warding scheme, their ranker can gain some insight into the reader’s performance
while being trained. This helps R3 mitigate the cascading error problem that most
pipeline systems with independently trained modules, like ours, suffer from and
boosts its recall remarkably. As the result, their ranker has higher recall in top-1
and top-3 than QASA although being slightly lower in top-5. Another model from
[46] is SR2 which is a simpler variant of R3. Because SR2 is not benefited by joint
learning, its ranker is more comparable to our model. To this end, QASA shows
more favorable results where it achieves 3.87% and 1.53% higher than SR2 ranker
in top-1 and top-3 respectively.

When comparing with our kickout model, which only uses a feed-forward
layer instead of self-attentive mechanism for document encoding, QASA also pro-
duces surpassing results among all top-k accuracy values. Concretely, by using

46

Table 4.4: Evaluation of retriever models on the QUASAR-T test set.

Top-1 Top-3 Top-5
SR2 ranker 28.80 46.40 54.90
R3 ranker 40.30 51.30 54.50
QASA Retriever 32.67 47.93 54.90
Kickout model 32.43 46.57 53.20

26

27

28

29

30

31

32

33

34

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

To
p

-1
 A

cc
u

ra
cy

Epoch

Early sto
p

p
in

g

Figure 4.3: Top-1 accuracy on the validation dataset after each epoch.

the QASA document representation, the model gives an improvement of 1.7% in
top-5. This results, in fact, have proven our hypothesis.

To analyse the results further, we plot a line chart, shown in Figure 4.3, rep-
resents the top-1 accuracy on the validation set evaluated after each epoch. Since
the training process adopts Early Stopping technique, it waits for 3 epochs without
any improvement until stopping. The best accuracy on the validation set is at the
12-th epoch, so the saved model at that epoch is considered the best model and it
is evaluated on the test set for final results.

Figure 4.4 depicts another line chart that represents the training loss calcu-
lated at the end of each epoch. There are a few noticeable peaks in the diagram
which are after the 4-th, 6-th, 9-th, and 13-th epoch. These peaks are correlated
with the top-1 accuracy diagram shown in Figure 4.3. Referring back to the train-

47

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Lo
ss

Epoch

Figure 4.4: Loss diagram of the training dataset calculated after each epoch.

ing Algorithm 3.1, whenever the accuracy stops improving, the negative sampling
technique switch from randomize approach to selecting top-n highest-scored neg-
ative documents using the latest model. As can be seen from Figure 4.3, the model
does not improve at the 4-th, 6-th, 9-th, and 13-th epoch, same as listed previously.
Since the negative documents sampled after these epochs are highest-scored, they
present the hardest training examples for the Retriever. Consequently, the loss
values calculated at the epochs after the corresponding listed epochs are peaks.
Despite the fact the loss values increase, the accuracy rates also increase at these
epochs which indicates that this negative sampling technique helps boosting the
model’s performance. Furthermore, it can be considered a training technique to
get the optimization process out of local optima.

4.4.3 Overall system

The overall results of the proposed system are demonstrated in Table 4.5 along
with several other open-domain QA systems. As can be seen from the table,
QASA consistently offers better results than the kickout model when integrated
with DrQA Reader, which proves once again the effectiveness of question-aware
self-attentive mechanism. Specifically, QASA outperforms the kickout model by
1.68% in F1 and 2.13% in EM.

48

The results of BiDAF and GA model are presented in [12]. Since they are
machine readers, in order to acquire the overall results of the system, they are
integrated with a simple retriever. Despite being state-of-the-art machine compre-
hension models for their reported datasets, both BiDAF and GA give particularly
poor results for the QUASAR-T dataset. This can demonstrate that the reader de-
pends greatly on the retriever. Without a good enough retriever, the reader could
become useless. When comparing with two systems from [46], our system excels
both of them by a large margin, especially with R3 (4.17% in F1 and 6.3% in EM)
in spite of the fact that our Retriever and the Reader are trained independently.

Table 4.5: The overall performance of various open-domain QA systems.

F1 EM
BiDAF 28.50 25.90
GA 26.40 26.40
SR2 38.80 31.90
R3 40.90 34.20
QASA Retriever + DrQA Reader 45.07 40.50
Kickout model + DrQA Reader 43.39 38.37

It is worth noting that the QUASAR-T dataset does not provide ground-truth
for document retrieval, therefore, this module is evaluated using pseudo labels. A
limitation of pseudo labels is that the positive documents are not guaranteed to be
relevant to the question. For example, given the question “What is the smallest
state in the US?”, one of its positive documents is “1790, Rhode Island ratifies
the United States Constitution and becomes the 13th US state” (it contains the an-
swer, “Rhode Island”). However, this positive document does not help the reader
since it is completely irrelevant. For the reader to extract the answer, not only the
retrieved document must enclose the exact string but also it must convey informa-
tion related to the query. For that reason, even though our Document Retriever
has lower recall than R3 ranker, its outputted documents are semantically similar
to the question, thus, they are more useful to the Reader which results in a much
higher performance of the overall system.

49

Conclusions

Following the work done in [7, 46], the thesis proposed an open-domain QA
system that has two main components: a Document Retriever and a Document
Reader. Specifically, the Document Retriever, called QASA, is an advanced deep
ranking model which contains (1) an Embedding Layer, (2) a Question Encoding
Layer, (3) a Document Encoding Layer, and (4) a neural Scoring Function. The
thesis hypothesizes that in order to effective retrieve relevant documents, the Re-
triever must be able to comprehend the question and automatically focus on some
important parts of the documents. Therefore, we proposed a deep neural network
to obtain question-aware self-attentive document representations and then used
pairwise learning to rank approach to train the model. A complete open-domain
QA system is constructed in a pipeline manner combining the QASA Retriever
with the Reader from DrQA. Having analyzed the results of QASA compared
to the kickout model, we demonstrate the effectiveness of using question-aware
self-attentive encodings for document retrieval in open-domain QA. We also show
that the Retriever has a substantial contribution to the overall system and by im-
proving the Retriever, we can extend the upper bound of machine reading module
markedly.

Although the method shows promising results compared to several base-
line models, some of which are even state-of-the-art, there are still many limi-
tations that the model suffers such as the cascading error from the Retriever to
the Reader. In the future, we will re-design the architecture so that the Retriever
and the Reader can be jointly trained as in [46] and try to mitigate this cascading
error problem. To evaluate the system even further, we will adopt more standard
datasets such as SQuAD and TREC.

50

List of Publications

[1] T. M. Nguyen, Van-Lien Tran, Duy-Cat Can, Quang-Thuy Ha, Ly T. Vu, and
Eng-Siong Chng, “QASA: Advanced Document Retriever for Open Domain
Question Answering by Learning to Rank Question-Aware Self-Attentive
Document Representations,” in Proceedings of the 3rd International Confer-
ence on Machine Learning and Soft Computing, ACM, 2019, pp. 221-225.

51

References

[1] A. Agarwal, H. Raghavan, K. Subbian, P. Melville, R. D. Lawrence, D. C.
Gondek, and J. Fan, “Learning to rank for robust question answering,” in
Proceedings of the 21st ACM international conference on Information and
knowledge management. ACM, 2012, pp. 833–842.

[2] J. R. Anderson, Cognitive psychology and its implications. Macmillan,
2005.

[3] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly
learning to align and translate,” arXiv preprint arXiv:1409.0473, 2014.

[4] B. Bai, J. Weston, D. Grangier, R. Collobert, K. Sadamasa, Y. Qi,
O. Chapelle, and K. Weinberger, “Learning to rank with (a lot of) word fea-
tures,” Information retrieval, vol. 13, no. 3, pp. 291–314, 2010.

[5] H. Bast and E. Haussmann, “More accurate question answering on freebase,”
in Proceedings of the 24th ACM International on Conference on Information
and Knowledge Management. ACM, 2015, pp. 1431–1440.

[6] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word vectors
with subword information,” Transactions of the Association for Computa-
tional Linguistics, vol. 5, pp. 135–146, 2017.

[7] D. Chen, A. Fisch, J. Weston, and A. Bordes, “Reading wikipedia to answer
open-domain questions,” in Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics, vol. 1, 2017, pp. 1870–1879.

[8] A. Conneau, D. Kiela, H. Schwenk, L. Barrault, and A. Bordes, “Supervised
learning of universal sentence representations from natural language infer-
ence data,” in Proceedings of the EMNLP, 2017, pp. 670–680.

52

[9] Y. Cui, Z. Chen, S. Wei, S. Wang, T. Liu, and G. Hu, “Attention-over-
attention neural networks for reading comprehension,” in Proceedings of
the 55th Annual Meeting of the Association for Computational Linguistics,
vol. 1, 2017, pp. 593–602.

[10] T. H. Dang, H.-Q. Le, T. M. Nguyen, and S. T. Vu, “D3ner: biomedical
named entity recognition using crf-bilstm improved with fine-tuned embed-
dings of various linguistic information,” Bioinformatics, vol. 34, no. 20, pp.
3539–3546, 2018.

[11] B. Dhingra, H. Liu, Z. Yang, W. Cohen, and R. Salakhutdinov, “Gated-
attention readers for text comprehension,” in Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics, vol. 1, 2017, pp.
1832–1846.

[12] B. Dhingra, K. Mazaitis, and W. W. Cohen, “Quasar: Datasets for question
answering by search and reading,” arXiv preprint arXiv:1707.03904, 2017.

[13] C. dos Santos and V. Guimarães, “Boosting named entity recognition with
neural character embeddings,” in Proceedings of the Fifth Named Entity
Workshop, 2015, pp. 25–33.

[14] A. Géron, Hands-on machine learning with Scikit-Learn and TensorFlow:
concepts, tools, and techniques to build intelligent systems. ” O’Reilly
Media, Inc.”, 2017.

[15] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget: Continual
prediction with lstm,” 1999.

[16] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feed-
forward neural networks,” in Proceedings of the AISTATS, 2010, pp. 249–
256.

[17] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[18] E. Grave et al., “Learning word vectors for 157 languages,” in Proceedings
of the LREC, 2018.

[19] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with deep
recurrent neural networks,” in 2013 IEEE international conference on acous-
tics, speech and signal processing. IEEE, 2013, pp. 6645–6649.

53

[20] B. F. Green Jr, A. K. Wolf, C. Chomsky, and K. Laughery, “Baseball: an
automatic question-answerer,” in Papers presented at the May 9-11, 1961,
western joint IRE-AIEE-ACM computer conference. ACM, 1961, pp. 219–
224.

[21] R. Herbrich, “Large margin rank boundaries for ordinal regression,” Ad-
vances in large margin classifiers, pp. 115–132, 2000.

[22] D. Hewlett, A. Lacoste, L. Jones, I. Polosukhin, A. Fandrianto, J. Han,
M. Kelcey, and D. Berthelot, “Wikireading: A novel large-scale language
understanding task over wikipedia,” arXiv preprint arXiv:1608.03542, 2016.

[23] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural com-
putation, vol. 9, no. 8, pp. 1735–1780, 1997.

[24] Z. Huang, W. Xu, and K. Yu, “Bidirectional lstm-crf models for sequence
tagging,” arXiv preprint arXiv:1508.01991, 2015.

[25] Y. Kim, Y. Jernite, D. Sontag, and A. M. Rush, “Character-aware neural
language models,” in Thirtieth AAAI Conference on Artificial Intelligence,
2016.

[26] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[27] O. Kolomiyets and M.-F. Moens, “A survey on question answering technol-
ogy from an information retrieval perspective,” Information Sciences, vol.
181, no. 24, pp. 5412–5434, 2011.

[28] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer,
“Neural architectures for named entity recognition,” in Proceedings of
NAACL-HLT, 2016, pp. 260–270.

[29] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no.
7553, p. 436, 2015.

[30] Z. Lin, M. Feng, C. N. d. Santos, M. Yu, B. Xiang, B. Zhou, and
Y. Bengio, “A structured self-attentive sentence embedding,” arXiv preprint
arXiv:1703.03130, 2017.

[31] T.-Y. Liu et al., “Learning to rank for information retrieval,” Foundations and
Trends R© in Information Retrieval, vol. 3, no. 3, pp. 225–331, 2009.

54

[32] Y. Ma, E. Cambria, and S. Gao, “Label embedding for zero-shot fine-grained
named entity typing,” in Proceedings of COLING 2016, the 26th Interna-
tional Conference on Computational Linguistics: Technical Papers, 2016,
pp. 171–180.

[33] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in
nervous activity,” The bulletin of mathematical biophysics, vol. 5, no. 4, pp.
115–133, 1943.

[34] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word
representations in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[35] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” in Ad-
vances in neural information processing systems, 2013, pp. 3111–3119.

[36] A. Mishra and S. K. Jain, “A survey on question answering systems with
classification,” Journal of King Saud University-Computer and Information
Sciences, vol. 28, no. 3, pp. 345–361, 2016.

[37] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltz-
mann machines,” in Proceedings of the 27th international conference on ma-
chine learning (ICML-10), 2010, pp. 807–814.

[38] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “Squad: 100,000+ ques-
tions for machine comprehension of text,” arXiv preprint arXiv:1606.05250,
2016.

[39] D. E. Rumelhart, G. E. Hinton, R. J. Williams et al., “Learning representa-
tions by back-propagating errors,” Cognitive modeling, vol. 5, no. 3, p. 1,
1988.

[40] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding
for face recognition and clustering,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2015, pp. 815–823.

[41] M. Seo, A. Kembhavi, A. Farhadi, and H. Hajishirzi, “Bidirectional attention
flow for machine comprehension,” in Proceedings of ICLR, 2017.

[42] Y. Shen, P.-S. Huang, J. Gao, and W. Chen, “Reasonet: Learning to stop read-
ing in machine comprehension,” in Proceedings of the 23rd ACM SIGKDD

55

International Conference on Knowledge Discovery and Data Mining. ACM,
2017, pp. 1047–1055.

[43] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: a simple way to prevent neural networks from overfitting,” The
Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[44] E. M. Voorhees et al., “The trec-8 question answering track report,” in Trec,
vol. 99. Citeseer, 1999, pp. 77–82.

[45] S. Wang and J. Jiang, “Learning natural language inference with lstm,” in
Proceedings of NAACL-HLT, 2016, pp. 1442–1451.

[46] S. Wang, M. Yu, X. Guo, Z. Wang, T. Klinger, W. Zhang, S. Chang,
G. Tesauro, B. Zhou, and J. Jiang, “R3: Reinforced ranker-reader for open-
domain question answering,” in Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

[47] W. Wang, N. Yang, F. Wei, B. Chang, and M. Zhou, “Gated self-matching
networks for reading comprehension and question answering,” in Proceed-
ings of the 55th Annual Meeting of the Association for Computational Lin-
guistics, vol. 1, 2017, pp. 189–198.

[48] W. A. Woods, R. M. Kaplan, B. Nash-Webber et al., “The lunar sciences
natural language information system: Final report,” BBN report, vol. 2378,
1972.

[49] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel,
and Y. Bengio, “Show, attend and tell: Neural image caption generation with
visual attention,” in International conference on machine learning, 2015, pp.
2048–2057.

[50] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in deep
learning based natural language processing,” ieee Computational intelli-
genCe magazine, vol. 13, no. 3, pp. 55–75, 2018.

56

	Abstract
	Acknowledgements
	Declaration
	Table of Contents
	Acronyms
	List of Figures
	List of Tables
	Introduction
	Open-domain Question Answering
	Problem Statement
	Difficulties and Challenges

	Deep learning
	Objectives and Thesis Outline

	Background knowledge and Related work
	Deep learning in Natural Language Processing
	Distributed Representation
	Long Short-Term Memory network
	Attention Mechanism

	Employed Deep learning techniques
	Rectified Linear Unit activation function
	Mini-batch gradient descent
	Adaptive Moment Estimation optimizer
	Dropout
	Early Stopping

	Pairwise Learning to Rank approach
	Related work

	Material and Methods
	Document Retriever
	Embedding Layer
	Question Encoding Layer
	Document Encoding Layer
	Scoring Function
	Training Process

	Document Reader
	DrQA Reader
	Training Process and Integrated System

	Experiments and Results
	Tools and Environment
	Dataset
	Baseline models
	Experiments
	Evaluation Metrics
	Document Retriever
	Overall system

	Conclusions
	List of Publications
	References

